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Abstract  
Background: Alzheimer’s disease (AD) is the most common type of dementia. Amyloid-β 
(Aβ) positivity is the main diagnostic marker for AD. Aβ positron emission tomography and 
cerebrospinal fluid are widely used in the clinical diagnosis of AD. However, these methods 
only assess the concentrations of Aβ and the accessibility of these methods is thus relatively 
limited compared with structural magnetic resonance imaging (sMRI).  
Methods: We investigated whether regions of interest (ROIs) in sMRIs can be used to 
predict Aβ positivity for samples with normal cognition (NC), mild cognitive impairment 
(MCI) and dementia. We obtained 846 Aβ negative (Aβ-) and 865 Aβ positive (Aβ+) 
samples from the Alzheimer’s Disease Neuroimaging Initiative database. To predict which 
samples are Aβ+, we built five machine learning models using ROIs and apolipoprotein E 
(APOE) genotypes as features. To test the performance of the machine learning models, we 
constructed a new cohort containing 97 Aβ- and 81 Aβ+ samples.  
Results: The best performing machine learning model combining ROIs and APOE had an 
accuracy of 0.798, indicating that it can help predict Aβ+. Furthermore, we searched ROIs 
that could aid our prediction and discovered that an average left entorhinal cortical region (L-
ERC) thickness is an important feature. We also noted significant differences in L-ERC 
thickness between the Aβ- and Aβ+ samples even in the same diagnosis of NC, MCI, and 
dementia.  
Conclusions: Our findings indicate that ROIs from sMRIs along with APOE can be used as 
an initial screening tool in the early diagnosis of AD.  
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1. INTRODUCTION 

Dementia, a progressive neurodegenerative brain disorder, is characterized by intellectual and 
cognitive decline [1], including Alzheimer’s disease (AD), vascular dementia, and 
frontotemporal dementia. AD is the most common type of dementia and occurs in 60 to 80% 
of all patients with dementia [2]. The annual incidence of AD increases with age, showing 
0.4%, 3.2%, and 7.6% for age 65 to 74, age 75 to 84, and age 85 and older, respectively [3]. 

It is challenging to identify the mechanisms underlying AD. However, the 
accumulation of amyloid-β (Aβ) plaques in the brain is suggested to be a major diagnostic 
marker of AD [4,5]. There exist representative methods for measuring Aβ positivity: positron 
emission tomography (PET) with 18F-florbetapir [6,7], 18Fflorbetaben (18F-FBB) [8], and 18F-
flutemetamol [9] is one method, while quantification of Aβ plaque load by measuring Aβ 
concentrations in cerebrospinal fluid (CSF) is another [10]. Some studies have also predicted 
Aβ positivity using structural magnetic resonance imaging (sMRI) and apolipoprotein E 
(APOE) genotypes [11,12]; these studies demonstrated that the predictive power for Aβ 
positivity in individuals with mild cognitive impairment (MCI) improved when sMRI and 
APOE genotypes were used together. Considering that sMRI has been performed with other 
diseases or injuries in clinics, the prediction of Aβ positivity using sMRI can be used as an 
initial screening tool for AD diagnosis.  

In this study, to predict Aβ positivity, we constructed machine learning models using 
sMRI from two cohorts comprising normal cognition (NC), MCI, and dementia samples. The 
first cohort was the Ewha Womans (EW) cohort comprising 178 patients from the Ewha 
Womans University Mokdong Hospital and Ewha Womans University Seoul Hospital. The 
second cohort was obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) 
database [13]. However, because the number of samples in the EW cohort was much smaller 
than the number of regions of interest (ROIs) from sMRI, ADNI was used for constructing 
the training models and the EW cohort was tested in terms of the Aβ classification process. 
Moreover, two APOE single nucleotide polymorphisms (SNPs) (rs429358 and rs7412) were 
used together with sMRI to increase the performance. We then performed permutation 
feature importance [14] using the best performing machine learning model to determine, from 
the sMRIs, the ROIs that greatly influenced Aβ positivity prediction. Finally, we identified 
ROIs that showed significant differences in Aβ accumulation across all cohorts and diagnoses 
of NC, MCI, and AD. 
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2. MATERIALS 
2.1. EW cohort 
We newly constructed the EW cohort by collecting data on 18F-FBB PET scanning, T1-
weighted sMRI, and APOE genotypes of 178 subjects between June 2018 and July 2021 from 
the memory disorder clinic in Ewha Womans University Mokdong Hospital and Ewha 
Womans University Seoul Hospital. The acquisition methods of these data sets are described 
in Supplementary Section 1. The included subjects satisfied the following criteria: (1) aged 
between 50 and 90 years, (2) presence on the Alzheimer’s continuum modified from the 
National Institute on Aging and Alzheimer’s Association research framework in 2018 [15], (3) 
presence of a reliable informant, (4) the ability to read and write, and (5) provided written 
informed consent.  

To distinguish the patient’s diagnostic status, global cognition was assessed using the 
Korean-Mini-Mental Status Examination (K-MMSE)[16], global clinical dementia rating 
(CDR), sum of boxes of CDR, and a detailed neuropsychological battery of Seoul 
Neuropsychological Screening Battery-II [17]. To determine the Aβ positivity of the subjects, 
two expert PET readers visually judged the 18F-FBB PET PET data, with all clinical 
information masked [18,19]. The tracer uptake in four cortical regions (lateral temporal cortex, 
frontal cortex, parietal cortex, and posterior cingulate cortex/precuneus) was evaluated using 
the regional cortical tracer uptake (RCTU) system (1 = no uptake, 2 = moderate uptake, 3 = 
pronounced uptake). Next, the global uptake in the brain was evaluated using the brain 
amyloid plaque load system (1 = RCTU score 1 in each of the four brain regions, 2 = RCTU 
score 2 in any of the four brain regions and no RCTU score 3 in these regions, 3 = RCTU 
score 3 in at least one of the four brain regions). Finally, patients with PET scans with a brain 
amyloid plaque load score of 2 and 3 were designated as Aβ positive (Aβ+), whereas the 
others were distinguished as Aβ negative (Aβ-). 
 
2.2. ADNI cohort 
We downloaded data on sMRI, PET, and APOE genotypes from the ADNI website. We used 
the “UCSF Cross-Sectional FreeSurfer (4.3) (version 2015-11-2)” dataset, which contains 
brain structural information, and the “UC Berkeley-AV45 Analysis (version 2016-10- 17)” 
dataset for PET, which contains Aβ information. The Aβ- and Aβ+ cut off was 1.11 standard 
uptake value ratios normalized by the whole cerebellar reference region [20]. We used the 
“ApoE-Results (version 2013-05- 14)” dataset that contains information on the two SNPs 
rs429358 and rs7412.  

The ADNI database comprises data from the same subject collected multiple times. 
Because we used the ADNI database for training a model, all the data from each subject were 
used. Finally, we used 1,711 samples with all information on sMRI, PET, and APOE in the 
ADNI cohort. 
 
2.3. EW and ADNI + EW datasets for a predictive model 
We constructed two datasets to build and evaluate a predictive model that classifies Aβ+ and 
Aβ- samples. The first dataset was called the EW dataset; samples in this cohort were divided 
into 60%, 20%, and 20% as training, validation, and test sets, respectively, for five-fold 
cross-validation (CV). The second dataset was called the ADNI + EW dataset, where all 
samples in the ADNI cohort were used for the training set; the samples in the training and 
validation datasets of the EW dataset in each CV were used as the validation set; and samples 
in the test set of the EW dataset in each CV were used as the test set. Because the test sets in 
the EW and ADNI + EW datasets were same, it was possible to check whether the ADNI 
cohort is beneficial in improving the classification performance of the EW cohort. 
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2.4. sMRI preprocessing 
For the EW cohort, ROIs were extracted from sMRIs using the FreeSurfer (6.0) software 
package (http:// surfer.nmr.mgh.harvard.edu). For both the ADNI and EW cohorts, a total of 
311 ROIs, including cortical volume, mean cortical thickness, cortical thickness standard 
deviation, and subcortical volume and surface area, were used.  

Brain volume and thickness decrease with age, and this can be a confounding factor 
biasing the neuroimaging analysis of AD [21,22]. Thus, the performance of a predictive model 
can be improved by eliminating this confounding factor [23]. Using generalized linear 
regression [24], we removed two confounders of age and cohort (ADNI or EW cohort) from 
sMRI data in the ADNI + EW dataset, and a confounder of age from sMRI data in ADNI and 
EW datasets (see Supplementary Section 2). 
 
2.5. Mapping the APOE genotype to SNPs 
Because APOE is involved in Aβ binding, clearance, and brain synaptic function, any 
alterations in the APOE genotype can cause Aβ plaque accumulation in the cerebral cortex 
[25,26]. In particular, APOE ϵ4 is an important biomarker for predicting Aβ [27]. Therefore, we 
used the two SNPs rs429358 and rs7412; they represent six genotypes of APOE [28]. 
 
  

 14681331, ja, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/ene.15775 by U

niversity O
f Southern C

alifornia, W
iley O

nline L
ibrary on [27/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



 
 

3. METHODS 
3.1. Machine learning methods for the prediction of Aβ positivity 
For the prediction of Aβ positivity, a total of five machine learning methods [logistic 
regression (LR), decision tree (DT), random forest (RF), support vector machine (SVM), and 
XGBoost (XGB) [29] were constructed, and the performances of these methods were 
measured with five-fold CV using accuracy (ACC), f1-score (F1), area under the receiver 
operating characteristic curve (AUC), and Matthews correlation coefficient (MCC) [30]. The 
set of hyperparameter values of the five machine learning models is described in 
Supplementary Section 3. 
 
3.2. Feature selection methods for identifying ROIs related to Aβ positivity 
After constructing the models for predicting Aβ positivity, we assessed the ROIs of the sMRI 
that contribute to the classification of the Aβ+ sample. First, we selected a model with the 
highest test MCC among the five machine learning methods. Next, for each ROI, 
permutation-based feature importance was calculated by estimating decreases in performance 
by randomly shuffling the values of a feature [14]. For each fold of the five-fold CV, the 
permutation-based feature importance was calculated 100 times to reduce variance in 
prediction errors; then, the highest-scoring 20 of 311 ROIs were selected. Third, the ROIs 
that were ranked in the top 20 in at least two folds of the five-fold CV were selected. 
 We further refined the ROIs related to Aβ positivity among the important ROIs from 
the classification of Aβ+ samples using machine learning. The t-test was performed to assess 
differences between the Aβ+ and Aβsamples for each diagnosis of NC, MCI, and dementia 
for all of the samples in the EW, ADNI, and ADNI + EW datasets. ROIs with a p-value of < 
0.1 were considered to be related to Aβ accumulation. 
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4. RESULTS 
4.1. Datasets 
 
Table 1. Characteristics of the patients in the EW and ADNI cohorts. 

Properties EW cohort ADNI cohort p-values of 
two cohortsa 

Number of samples 97 81 - 846 865 - - 
NC/MCI/Dementia 37/46/14 5/46/30 <1e-05* 421/389/36 184/435/246 <1e-05* 0.001* 
APOE non-
ϵ4/APOE ϵ4 

86/11 32/49 <1e-05* 684/162 329/536 <1e-05* 0.079 

Male/Female 61/36 47/34 0.612 459/387 452/413 0.435 0.070 
Age (years) 69.84±7.28 73.28±7.23 0.002* 73.01±7.67 74.84±7.11 <1e-05* 2e-05* 
Education (years) 10.63±4.61 10.12±4.81 0.476 16.54±2.52 15.95±2.77 <1e-05* <1e-05* 
MMSEb (score) 26.37±4.22 22.83±5.08 <1e-05* 28.51±2.08 26.22±3.80 <1e-05* <1e-05* 
CDRSB 1.91±2.70 3.51±2.71 1e-04* 0.79±1.22 2.35±2.58 <1e-05* <1e-05* 
Note: p-values for the characteristics based on diagnosis, APOE, and sex were calculated using the two-sample Chi-square test. For the 
MMSE, age, education, and CDRSB, the mean ± standard deviation values have been shown, and the p-values were calculated using the 
two-sample t-test. *indicates that the p-value is < 0.05. In the ADNI cohort, five and thriteen samples did not have values for MMSE and 
CDRSB, respectively. 
Abbreviations: AD, Alzheimer’s Disease; Aβ-, Aβ negative; Aβ+, Aβ positive; EW, Ewha Womans; ADNI, Alzheimer’s Disease 
Neuroimaging Initiative; NC, normal cognition; MCI, mild cognitive impairment; APOE, apolipoprotein E; MMSE, Mini-Mental State 
Examination; CDRSB, Clinical Dementia Rating sum of boxes 
aThe t-test and two-sample Chi-square test were performed to assess differences between the EW and ADNI cohorts. 
bThe EW and ADNI cohorts were measured by Korean-MMSE and MMSE, respectively 

 
The characteristics of the patients in the EW and ADNI cohorts are summarized in Table 1. 
Table 1 shows significant differences in age, education, MMSE, and CDRSB between the 
EW and ADNI cohorts. The adjustment for the differences in age and the cohort categories 
was performed using generalized linear regression in Section 2.4. As the number of NC 
samples in EW is relatively smaller than that in ADNI, MMSE and CDRSB values were 
different accordingly. 
 
4.2. Aβ+ classification results 
 
Table 2. Prediction of Aβ positivity measured as ACC, F1, AUC, and MCC in the EW and 
ADNI + DW datasets. 

Features Models EW dataset ADNI + EW dataset  
ACC F1 AUC MCC ACC F1 AUC MCC 

SNP DT 0.759±0.036 0.705±0.048 0.770±0.026 0.516±0.070 0.775±0.016 0.719±0.027 0.755±0.037 0.560±0.042 

sMRI 

DT 0.545±0.064 0.513±0.080 0.542±0.053 0.095±0.135 0.714±0.077 0.688±0.108 0.732±0.098 0.436±0.155 
LR 0.680±0.065 0.655±0.074 0.697±0.062 0.364±0.128 0.702±0.064 0.693±0.095 0.804±0.064 0.423±0.144 
RF 0.641±0.087 0.581±0.093 0.708±0.050 0.272±0.174 0.674±0.030 0.684±0.051 0.781±0.056 0.384±0.070 
SVM 0.641±0.038 0.520±0.091 0.695±0.044 0.294±0.095 0.697±0.080 0.686±0.114 0.811±0.067 0.422±0.170 
XGB 0.663±0.056 0.588±0.092 0.665±0.021 0.312±0.119 0.696±0.097 0.708±0.101 0.798±0.081 0.436±0.186 
Average 0.634±0.079 0.571±0.101 0.661±0.078 0.268±0.161 0.697±0.074 0.692±0.097 0.785±0.080 0.420±0.152 

sMRI + 
SNP 

DT 0.664±0.125 0.604±0.164 0.659±0.145 0.323±0.259 0.787±0.026 0.770±0.032 0.822±0.027 0.576±0.049 
LR 0.686±0.068 0.646±0.107 0.758±0.078 0.375±0.134 0.792±0.057 0.772±0.067 0.847±0.036 0.586±0.110  
RF 0.674±0.048 0.596±0.060 0.753±0.042 0.340±0.098 0.775±0.035 0.770±0.050 0.843±0.057 0.566±0.077 
SVM 0.658±0.061 0.581±0.111 0.713±0.056 0.314±0.118 0.759±0.065  0.743±0.085  0.846±0.042  0.524±0.141 
XGB 0.725±0.057 0.679±0.068 0.753±0.044 0.449±0.110 0.798±0.041 0.786±0.060 0.857±0.060 0.613±0.086 
Average 0.681±0.080 0.621±0.114 0.727±0.091 0.360±0.163 0.782±0.049 0.768±0.063 0.843±0.048 0.573±0.102 

All values in the table have been expressed as mean ± standard deviation. Boldface represents the best performance of each dataset. 
Abbreviations: ACC, accuracy; F1, f1-score; AUC, area under the receiver operating characteristic curve; MCC, Matthews correlation 
coefficient; sMRI, structural magnetic resonance imaging; SNP, single nucleotide polymorphism; DT, decision tree; LR, logistic 
regression; RF, random forest; SVM, support vector machine; XGB, XGBoost. 

 
Table 2 shows the performances of the classification of the Aβ+ samples as per five machine 
learning methods using the EW and ADNI + EW datasets. Compared with the EW dataset, 
the average performances of the five methods increased in the ADNI + EW dataset. When 
both sMRI and SNPs were used as features, on average, a 0.101, 0.147, 0.116, and 0.213 
increase was noted in the ACC, F1, AUC, and MCC, respectively. Similarly, when sMRI was 
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used as a feature, the average performance of the ADNI + EW dataset was higher than that of 
the EW dataset. In Table 2, the performances of all 40 cases (five classification methods × 
four metrics) increased when the ADNI cohort was used for training in the ADNI + EW 
dataset. This performance improvement indicates that the EW cohort used in this study has a 
similar distribution to the widely used ADNI cohort and that a large number of training 
samples is helpful for a more accurate classification of Aβ+ samples. 
 When the cases using sMRI and two SNPs as multimodalities were compared with 
the cases using sMRI as a single modality, average increases of 0.047, 0.050, 0.066, and 
0.092 were noted for ACC, F1, AUC, and MCC, respectively, in the EW dataset, and 0.085, 
0.076, 0.058, and 0.153, respectively, in the ADNI + EW dataset. When both sMRI and SNP 
were used as features, all performance metrics were higher, except for F1 of LR, when using 
sMRI only. 
 In the EW dataset, the performances of all methods that used only sMRI or the 
multimodalities of SNP and sMRI were lower than those of the methods using SNPs. 
However, in the ADNI + EW dataset, although the models that used SNPs as features 
exhibited better performances than the models that used sMRI as features, the models that 
used both sMRI and SNPs as features outperformed the models that used single modalities 
(SNPs or sMRI). In addition, when sMRI was used as a single modality feature, the average 
performances of the five machine learning models were 0.697, 0.692, 0.785, and 0.420 for 
ACC, F1, AUC, and MCC, respectively, indicating that the Aβ samples could be 
distinguished using sMRI. Our results indicate that the SNPs rs429358 and rs7412 are more 
important than sMRI as biomarkers for judging Aβ positivity; however, if the number of 
datasets is sufficient, sMRI can be a major biomarker that can judge Aβ positivity; moreover, 
the classification of Aβ+ samples can be improved by combining sMRI and SNPs. 
 Taken together, the models that used sMRI and SNPs as features in the ADNI + EW 
dataset outperformed all of the other models used for the classification of the Aβ+ samples. 
In particular, the XGBoost method showed the highest performances of 0.798 ± 0.041, 0.786 
± 0.060, 0.857 ± 0.060, and 0.613 ± 0.086 in terms of ACC, F1, AUC, and MCC, 
respectively. 
 For comparison, we measured the prediction performance of the ADNI dataset by 
dividing 60%, 20%, and 20% of the 1,033 non-duplicated subjects into the training set, 
validation set, and test set, respectively, in the five-fold CV. The performance of the five 
machine learning models using the ADNI dataset are described in Supplementary Table 1. 
The DT method had the highest ACC and MCC values of 0.733 and 0.469, respectively, but 
they were lower than that in the ADNI + EW dataset. 
 
4.3. Classification of Aβ+ samples in the diagnosis groups using the ADNI + EW and 
ADNI datasets 
Table 1 shows that the ratios of diagnosis between the Aβ- and Aβ+ samples were 
significantly different (p < 1e−05). While the ratios of the Aβ- and Aβ+ samples were similar 
for MCI, they were different for NC and dementia because AD is the most common type of 
dementia. Here, we additionally used the ADNI dataset because the number of samples in 
some diagnostic categories of the ADNI + EW dataset are small, such as five samples in Aβ+ 
NC. Therefore, we performed the following procedure to check whether the discriminate 
power of the Aβ+ samples in Table 2 was caused by the patient’s diagnosis. 
 First, for each dataset, we selected a model that had the highest test MCC values 
among the five machine learning methods when both SNPs and sMRI were used. For the 
ADNI + EW and ADNI datasets, the selected model was XGBoost and DT, respectively. 
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Second, the prediction of Aβ positivity for all the test samples was obtained using the five-
fold CV results of the selected models. 
 
Table 3. Accuracy of the prediction of Aβ positivity of each diagnosis of NC, MCI, and 
dementia for the ADNI + EW and ADNI datasets. 

Diagnosis ADNI + EW dataset ADNI dataset 
All Aβ- Aβ+ All Aβ- Aβ+ 

NC 0.833 (35/42) 0.865 (32/37) 0.600 (3/5) 0.714 (432/605) 0.808 (340/421) 0.500 (92/184) 

MCI 0.750 (69/92) 0.696 (32/46) 0.804 (37/46) 0.718 (592/824) 0.799 (311/389) 0.646 (281/435) 
Dementia 0.864 (38/44) 0.714 (10/14) 0.933 (28/30) 0.816 (230/282) 0.861 (31/36) 0.809 (199/246) 
Abbreviations: Aβ-, Aβ negative; Aβ+, Aβ positive; EW, Ewha Womans; ADNI, Alzheimer’s Disease Neuroimaging Initiative; NC, 
normal cognition; MCI, mild cognitive impairment. 

 
Figure 1. Boxplots of the normalized left entorhinal cortical thickness average are shown for 
Aβ+ (in blue) and Aβ- (in red) samples in the ADNI + EW dataset (A), the ADNI dataset (B), 
and the EW dataset (C). Abbreviations: Aβ-, Aβ negative; Aβ+, Aβ positive; NC, normal 
cognition; MCI, mild cognitive impairment. 

 
 
 Table 3 shows the ACC of the predictions of Aβ positivity for the three diagnosis 
categories in each dataset, where a threshold for positive or negative prediction is 0.5. In the 
ADNI + EW dataset, the ACC of the Aβ+ NC sample was low as 60.0%, but the ACC of the 
Aβ- dementia sample was 71.4%, which was similar to that of the MCI samples. 
Supplementary Figure 1 shows that when the thresholds for predicting positive or negative 
Aβ were 0.4 and 0.6, the ACCs of each category were also similar with those using a 
threshold of 0.5. These results indicate that the prediction performance of the XGBoost 
method was not biased toward the patient’s diagnosis. 
 In the ADNI dataset, of 282 dementia samples, 36 were Aβ- and 86.1% were 
correctly predicted, which had a higher ACC than that of Aβ+. However, the ACC of the Aβ+ 
NC sample was as low as 50.0%. Furthermore, when the threshold for deciding positive or 
negative Aβ was 0.4, ACCs of Aβ+ NC and Aβ- NC samples were 0.625 and 0.682, 
respectively (Supplementary Figure 2). These results support that the prediction of Aβ 
positivity was not biased toward the patient’s diagnosis. 
 In addition, based on the results in Table 3, we calculated post-test probabilities of a 
sample being Aβ+ when it was predicted to be Aβ+. For the ADNI + EW dataset, a pre-test 
probability was 0.455, and a post-test probability increased to 0.747 with a positive likelihood 
ratio of 3.541. Similarly, for the ADNI dataset, the pretest probability was 0.506, and the 
post-test probability increased to 0.777 with the positive likelihood ratio of 3.411. 
 
Figure 2. Visualization of the thickness of the left entorhinal cortical region in the EW 
cohort. “Mean" is the average of all the subjects in the Aβ+ or Aβ- groups in a given 
diagnosis category, whereas “Value" is the actual value of the subject that is the closest to the 
mean. Abbreviations: Aβ-, Aβ negative; Aβ+, Aβ positive; NC, normal cognition; MCI, mild 
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cognitive impairment. Abbreviations: Aβ-, Aβ negative; Aβ+, Aβ positive; NC, normal 
cognition; MCI, mild cognitive impairment. 

 
 
4.4. ROIs related to the classification of Aβ+ samples 
To identify the ROIs of the sMRI contributing to the classification of Aβ+ samples in the 
prediction models, permutation-based feature importance was calculated for each ROI using 
the XGBoost method. Supplementary Table 2 shows ROIs that were selected as important 
features in the classification of Aβ+ samples. The measurement of permutation-based feature 
importance identified 12 important ROIs that ranked within the top 20 in at least 2 CVs of the 
five-fold CVs. Among the 12 ROIs, significant differences (p-value < 0.1) between the Aβ- 
and Aβ+ samples were noted in most ROIs, regardless of cohorts. However, several ROIs did 
not show significant differences in the dementia category of the ADNI and ADNI + EW 
datasets and the NC category of the EW dataset. 
 Among the 12 important ROIs in the classification of Aβ positivity, five ROIs had 
significant differences (p-value < 0.1 in the t test) between the Aβ- and Aβ+ samples in all 
diagnoses for at least one dataset (Table 4). 
 Among the five ROIs, four were related to Aβ only in a specific cohort or diagnosis. 
However, the left entorhinal cortical thickness average (L-ERC thickness) showed a 
significant difference (p-value < 0.1) between the Aβand Aβ+ samples in all diagnoses and 
all datasets. 
 
Table 4. The five ROIs of sMRI contributing to the classification of Aβ+ samples with 
statistical significance. 

Datasets ROIs Measures # of CVsa Allb NCc MCId Dementiae 

ADNI and 
EW cohorts 

Left Entorhinal Cortical Thickness Average 2 <1e-05 2e-04 <1e-05 8e-04 
Left Medial Orbitofrontal Cortical Thickness Average 2 <1e-05 0.004 <1e-05 0.848 
Right Entorhinal Cortical Thickness Average 2 <1e-05 9e-04 <1e-05 0.025 
Right Entorhinal Cortical Volume 2 <1e-05 3e-04 <1e-05 0.005 
Right Pars Orbitalis Cortical Volume 2 <1e-05 0.057 2e-05 0.056 

ADNI 
cohort 

Left Entorhinal Cortical Thickness Average 2 <1e-05 0.001 <1e-05 0.033 
Left Medial 
Orbitofrontal Cortical Thickness Average 2 <1e-05 0.017 <1e-05 0.273 
Right Entorhinal Cortical Thickness Average 2 <1e-05 0.004 <1e-05 0.232 
Right Entorhinal Cortical Volume 2 <1e-05 4e-04 <1e-05 0.090 
Right Pars Orbitalis Cortical Volume 2 <1e-05 0.109 3e-05 0.474 

EW cohort Left Entorhinal Cortical Thickness Average 2 <1e-05 0.052 5e-04 0.004 
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Left Medial Orbitofrontal Cortical Thickness Average 2 <1e-05 0.073 0.003 0.024 
Right Entorhinal Cortical Thickness Average 2 <1e-05 0.065 0.005 0.053 
Right Entorhinal Cortical Volume 2 1e-05 0.389 0.040 0.024 
Right Pars Orbitalis Cortical Volume 2 0.002 0.061 0.225 0.017 

Note: p-values > 0.1 are presented in bold 
Abbreviations: NC, normal cognition; MCI, mild cognitive impairment. 
aThe number of cross-validation (CV) folds, where the ROI is in the top 20 in the permutation feature importance calculation. 
b P -values of the t-test for the mean difference between all Aβ- and all Aβ+ samples 
c P -values of the t-test for the mean difference between Aβ- NC and Aβ+ NC samples. 
d P -values of the t-test for the mean difference between Aβ- MCI and Aβ+ MCI samples. 
e P -values of the t-test for the mean difference between Aβ- dementia and Aβ+ dementia samples. 

 
4.5. Cortical thickness of the left entorhinal region is related to the accumulation of Aβ 
Figure 1 shows boxplots of normalized L-ERC thickness that was grouped based on Aβ 
positivity, Aβ negativity, and p-values of the t-test for the mean difference of normalized L-
ERC thickness between the Aβ- and Aβ+ samples in all combinations of diagnoses and 
datasets. The normalized L-ERC thickness was thinner for Aβ+ samples than Aβ- samples, 
regardless of the datasets and the diagnosis of the sample. Figure 2 shows the left entorhinal 
region of sample subjects whose L-ERC thicknesses were closest to the mean of that for the 
samples of each diagnosis category and Aβ negativity or Aβ positivity in the EW cohort. 
Even if the diagnosis was the same, it could be seen that the L-ERC thickness of the Aβ+ 
samples was thinner than that of the Aβ- samples. 
 
4.6. Associations of left entorhinal cortical thickness with APOE genotypes and age 
We also conducted an experiment to see whether L-ERC was related to age and APOE 
genotypes with significant p-values between Aβ+ and Aβ- in Table 1. Figure 3 shows 
boxplots of normalized L-ERC thickness grouped by APOE genotypes and p-values of a t-
test showing the mean difference of normalized L-ERC thickness between samples with 
APOE ϵ2/APOE ϵ3 and those with APOE ϵ4 in the EW, ADNI, and ADNI + EW datasets. 
For all three datasets, the p-values were significant (p-value < 0.1), which confirmed that the 
L-ERC thickness is related not only to Aβ accumulation but also to APOE genotypes. 
 
Figure 3. Boxplots of the normalized average of the left entorhinal cortical thickness are 
shown for samples with ϵ4 (in blue) and samples with ϵ2 and ϵ3 (in red) in the ADNI + EW, 
ADNI, and EW datasets. 
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Figure 4. Correlation plots between the average of the left entorhinal cortical thickness (L-
ERC thickness) and age. The bold red line is the regression line and the red zone is the 95% 
confidence interval. 

 
 
 Figure 4 shows a negative correlation between L-ERC thickness and age with 
statistical significance for the ADNI and EW datasets, indicating that L-ERC thickness 
decreases as age increases. However, as a result of linear regression, the coefficient of the L-
ERC thickness was -0.022 with a p-value of 0.963, and the p-value was ranked 306th out of 
311, indicating that it is relatively less affected by age than other ROIs are. The experiment is 
detailed in Supplementary Section 4 and coefficients and p-values of all ROIs are provided in 
Supplementary Table 3. 
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5. DISCUSSION 
Although amyloid PET can determine AD positivity, it is usually practiced in clinics only 
when considerable cognition impairment is noted due to its high cost. CSF based methods are 
considered to reflect the level of amyloid in brain; however, their invasiveness often prevents 
their implementation to elderly adults. However, sMRI is a relatively more accessible 
approach. Thus, we constructed machine learning models to classify Aβ positivity using 
ROIs from sMRI in the ADNI cohort. Because the ADNI cohort contains a large number of 
samples, when it was used as the training data the prediction accuracy of the EW cohort was 
improved to approximately 0.7 compared to when part of EW cohort was used as training 
data (Table 2). This indicates that the machine learning classification model can be used 
across cohorts from different continents. Note that the ADNI data was collected in the United 
States and Canada while the EW data was collected in South Korea. When APOE genotypes 
were combined with sMRI, the accuracy reached 0.798 with XGB. Moreover, the accuracies 
from several machine learning classifiers exhibited 0.782 on average, similar to the highest 
accuracy score, indicating that the classification performance does not depend on classifiers. 
However, we may expect more improved accuracies if more complex models, such as deep 
learning approaches, can be used when the larger number of samples with AD diagnosis, 
sMRI, and APOE genotypes are available. 
 We also checked whether the prediction accuracy depends on the diagnosis of 
samples (Table 3). Previous studies showed that sMRI combined with clinical variables can 
be used to predict Aβ+ for MCIs with accuracies of around 0.8 [11, 12]. In our study, the 
prediction accuracies in MCI were 0.750 and 0.718 for the EW cohort and ADNI cohort, 
respectively. Although we cannot directly compare these accuracies due to the differences in 
the cohorts, our study could confirm the applicability of sMRI to the prediction of Aβ 
pathology in MCI. Among the dementia group, accuracies in samples with Aβ+ were high as 
0.933 and 0.809 for the EW cohort and ADNI cohort, respectively. Encouragingly, accuracies 
in samples with Aβ- were 0.714 and 0.861 for the EW dataset and the ADNI dataset, 
respectively, showing that our approach can differentiate different types of dementia. In the 
NC samples, the accuracies were 0.833 and 0.714 for the EW cohort and the ADNI cohort, 
respectively, and Aβ- samples seem to be more correctly predicted than Aβ+ samples. 
However, when we used different thresholds for predicting positive or negative samples, 
prediction accuracies of Aβ+ samples can be improved, although the overall accuracies 
decreased slightly (Supplementary Figures 1 and 2). This result illuminates the possibilities 
of early diagnosis of Aβ+ for NC. 
 Table 1 shows that the distributions of diagnosis categories, years of education, and 
MMSE and CDRSB values were different between the EW and ADNI cohorts. In our 
prediction model, we did not take these feature values into account because we focused on 
the relationship between the brain structural changes and Aβ positivity rather than the 
cognitive levels. However, if Aβ positivity and cognitive levels are predicted together, these 
features need to be considered as well. 
 Our study showed that L-ERC thickness is an important ROI for the classification of 
Aβ+ samples in the XGBoost method and that it significantly differed depending on the 
accumulation of Aβ even in the same diagnosis categories. ERC is known to play an essential 
role in memory formation and is one of the first affected areas in AD because of its 
connection to the hippocampus and neocortex [31,32], and ERC thickness is associated with 
MMSE and AD assessment scale–cognitive [33]. Previous studies have even shown that ERC 
is a more important biomarker than the hippocampus in detecting a conversion from non-
dementia in patients to AD or from MCI to AD [34-36]. In addition, ERC thickness is an 
important ROI in distinguishing AD and healthy controls [37]. 
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 For the relationship between cortical thickness and Aβ positivity, an early study 
reported that there was no significant difference between Aβ+ (nine samples) and Aβ- (35 
samples) in medial temporal lobe cortex thickness [38]. However, this observation might be 
due to the small number of samples in the study. In our study, we observed in the NC 
diagnosis category of the EW cohort (Table 4) that the five ROIs showed p-values > 0.05 and 
L-ERC thickness had the p-value of 0.052, where the number of NC subjects was small with 
five Aβ+ and 37 Aβ- samples. When the ADNI cohort with the larger number of samples was 
used, four ROIs including ERC showed p-values < 0.05 even in the NC category. In addition, 
several studies showed that ERC thickness declined in Aβ+ samples [39,40]. 
 A recent study has shown that APOE4 expression affects the regulation of lipid 
metabolism in the ERC, implying that APOE4 increases the susceptibility of neurons in the 
ERC to AD pathogenesis [41]. This previous study supports our results that Aβ classification 
performance was improved when APOE and sMRI were combined, and that L-ERC 
thickness and APOE genotype were significantly related to one another. 
 In addition to L-ERC thickness, Table 4 shows a significant difference between Aβ+ 
and Aβ- samples in medial orbitofrontal cortex (mOFC) thickness, except for that of 
dementia in the ADNI cohort. Several studies suggested that mOFC is associated with Aβ 
accumulation in an early stage of AD [42,43]. By analyzing the ADNI cohort, Palmqvist et al. 
[42] showed that Aβ accumulation starts in the core regions of the default mode network, 
including mOFC. Our results also support that mOFC is an important region for 
distinguishing Aβ positivity in our EW cohort. 
 As progression of MCI to AD is clinically important, several studies have been 
conducted to predict the conversion of MCI to AD using sMRI [44,45]. Most studies used the 
ADNI cohort as it contains longitudinal data. Thus, by following up with subjects in the EW 
cohort, we will further investigate longitudinal changes on the relationship between ROIs in 
brain and Aβ accumulation and develop computational models to predict the conversion of 
MCI to AD as future work.  
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